List of literature used in web sections

[1] P. Khademagha, M. B. C. Aries, A. L. P. Rosemann, and E. J. van Loenen, “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Build. Environ., vol. 108, pp. 263–272, Nov. 2016, doi: 10.1016/j.buildenv.2016.08.035.
[2] D. Baeza Moyano and R. Gonzalez-Lezcano, “Indoor Lighting Workplaces: Towards New Indoor Lighting,” 2021, pp. 243–258. doi: 10.4018/978-1-7998-7279-5.ch012.
[3] P. L. Turner, E. J. W. Van Someren, and M. A. Mainster, “The role of environmental light in sleep and health: effects of ocular aging and cataract surgery,” Sleep Med. Rev., vol. 14, no. 4, pp. 269–280, Aug. 2010, doi: 10.1016/j.smrv.2009.11.002.
[4] T. A. Bedrosian and R. J. Nelson, “Timing of light exposure affects mood and brain circuits,” Transl. Psychiatry, vol. 7, no. 1, p. e1017, Jan. 2017, doi: 10.1038/tp.2016.262.
[5] T. M. Brown et al., “Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults,” PLOS Biol., vol. 20, no. 3, p. e3001571, Autumn 2022, doi: 10.1371/journal.pbio.3001571.
[6] S. T. Kent, L. A. McClure, W. L. Crosson, D. K. Arnett, V. G. Wadley, and N. Sathiakumar, “Effect of sunlight exposure on cognitive function among depressed and non-depressed participants: a REGARDS cross-sectional study,” Environ. Health, vol. 8, no. 1, p. 34, Jul. 2009, doi: 10.1186/1476-069X-8-34.
[7] M. Moore-Ede, D. Blask, S. Cain, A. Heitmann, and R. Nelson, Lights Should Support Circadian Rhythms: Evidence-Based Scientific Consensus. 2023. doi: 10.21203/
[8] G. C. Brainard et al., “Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor,” J. Neurosci., vol. 21, no. 16, pp. 6405–6412, Aug. 2001, doi: 10.1523/JNEUROSCI.21-16-06405.2001.
[9] H. J. Bailes and R. J. Lucas, “Human melanopsin forms a pigment maximally sensitive to blue light ( λ max ≈ 479 nm) supporting activation of G q /11 and G i/o signalling cascades,” Proc. R. Soc. B Biol. Sci., vol. 280, no. 1759, p. 20122987, May 2013, doi: 10.1098/rspb.2012.2987.
[10] R. J. Lucas et al., “Measuring and using light in the melanopsin age,” Trends Neurosci., vol. 37, no. 1, pp. 1–9, Jan. 2014, doi: 10.1016/j.tins.2013.10.004.
[11] L. S. Mure et al., “Melanopsin Bistability: A Fly’s Eye Technology in the Human Retina,” PLOS ONE, vol. 4, no. 6, p. e5991, 6 2009, doi: 10.1371/journal.pone.0005991.
[12] M. T. H. Do, “Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior,” Neuron, vol. 104, no. 2, pp. 205–226, Oct. 2019, doi: 10.1016/j.neuron.2019.07.016.
[13] E. D. Buhr, “Tangled up in blue: Contribution of short-wavelength sensitive cones in human circadian photoentrainment,” Proc. Natl. Acad. Sci., vol. 120, no. 2, p. e2219617120, Jan. 2023, doi: 10.1073/pnas.2219617120.
[14] M. A. St Hilaire et al., “The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration,” Proc. Natl. Acad. Sci. U. S. A., vol. 119, no. 51, p. e2205301119, Dec. 2022, doi: 10.1073/pnas.2205301119.
[15] A. Alkozei, R. Smith, N. S. Dailey, S. Bajaj, and W. D. S. Killgore, “Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance,” PLOS ONE, vol. 12, no. 9, p. e0184884, 9 2017, doi: 10.1371/journal.pone.0184884.
[16] A. Alkozei et al., “Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task,” Sleep, vol. 39, no. 9, pp. 1671–1680, Sep. 2016, doi: 10.5665/sleep.6090.
[17] W. D. S. Killgore, N. S. Dailey, A. C. Raikes, J. R. Vanuk, E. Taylor, and A. Alkozei, “Blue light exposure enhances neural efficiency of the task positive network during a cognitive interference task,” Neurosci. Lett., vol. 735, p. 135242, Sep. 2020, doi: 10.1016/j.neulet.2020.135242.
[18] CIE, “User guide to the alpha-opic toolbox for implementing CIE S 026,” International Commission on Illumination (CIE), 2018. doi: 10.25039/S026.2018.
[19] CIE, “CIE Position Statement on Non-Visual Effects of Light – Recommending proper light at the proper time,” 2019.
[20] M. Y. Park, C.-G. Chai, H.-K. Lee, H. Moon, and J. S. Noh, “The Effects of Natural Daylight on Length of Hospital Stay,” Environ. Health Insights, vol. 12, p. 1178630218812817, Dec. 2018, doi: 10.1177/1178630218812817.
[21] C. Schierz, “IS LIGHT WITH LACK OF RED SPECTRAL COMPONENTS A RISK FACTOR FOR AGE-RELATED MACULAR DEGENERATION (AMD)?,” in PROCEEDINGS OF the 29th Quadrennial Session of the CIE, Washington DC, USA: International Commission on Illumination, CIE, Jun. 2019, pp. 114–122. doi: 10.25039/x46.2019.OP20.
[22] L. Nan, Y. Zhang, H. Song, Y. Ye, Z. Jiang, and S. Zhao, “Influence of Light-Emitting Diode-Derived Blue Light Overexposure on Rat Ocular Surface,” J. Ophthalmol., vol. 2023, p. e1097704, Jan. 2023, doi: 10.1155/2023/1097704.
[23] L. Wang et al., “Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro,” J. Photochem. Photobiol. B, vol. 240, p. 112654, Mar. 2023, doi: 10.1016/j.jphotobiol.2023.112654.
[24] J. Nie et al., “More light components and less light damage on rats’ eyes: evidence for the photobiomodulation and spectral opponency,” Photochem. Photobiol. Sci., Dec. 2022, doi: 10.1007/s43630-022-00354-5.
[25] C. Núñez-Álvarez, C. Suárez-Barrio, S. Del Olmo Aguado, and N. N. Osborne, “Blue light negatively affects the survival of ARPE 19 cells through an action on their mitochondria and blunted by red light,” Acta Ophthalmol. (Copenh.), vol. 97, no. 1, pp. e103–e115, Feb. 2019, doi: 10.1111/aos.13812.
[26] C. Núñez-Álvarez and N. N. Osborne, “Blue light exacerbates and red light counteracts negative insults to retinal ganglion cells in situ and R28 cells in vitro,” Neurochem. Int., vol. 125, pp. 187–196, May 2019, doi: 10.1016/j.neuint.2019.02.018.
[27] UVEX ARBEITSSCHUTZ GmbH, “The hazards associated with blue light – and how safety spectacles can help,” 2018.
[28] International Commission on Illumination (CIE), “CIE S009:2002 IEC 62471 – Photobiological Safety of Lamps and Lamp Systems,” 2006.
[29] A. Pawlak, M. Różanowska, M. Zareba, L. E. Lamb, J. D. Simon, and T. Sarna, “Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts,” Arch. Biochem. Biophys., vol. 403, no. 1, pp. 59–62, Jul. 2002, doi: 10.1016/S0003-9861(02)00260-6.
[30] W. Tang, J. G. Liu, and C. Shen, “Blue Light Hazard Optimization for High Quality White LEDs,” IEEE Photonics J., vol. 10, no. 5, pp. 1–10, Oct. 2018, doi: 10.1109/JPHOT.2018.2867822.
[31] “Blue Light Hazard: New Knowledge, New Approaches to Maintaining Ocular Health,” Points de Vue | International Review of Ophthalmic Optics. (accessed Jul. 19, 2023).
[32] J. Moon et al., “Blue light effect on retinal pigment epithelial cells by display devices,” Integr. Biol., vol. 9, no. 5, pp. 436–443, 2017, doi: 10.1039/C7IB00032D.
[33] M. Marie et al., “Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells,” Cell Death Dis., vol. 9, no. 3, p. 287, Feb. 2018, doi: 10.1038/s41419-018-0331-5.
[34] X. Li, S. Zhu, and F. Qi, “Blue light pollution causes retinal damage and degeneration by inducing ferroptosis,” J. Photochem. Photobiol. B, vol. 238, p. 112617, Jan. 2023, doi: 10.1016/j.jphotobiol.2022.112617.
[35] L. Hs et al., “Influence of Light Emitting Diode-Derived Blue Light Overexposure on Mouse Ocular Surface,” PloS One, vol. 11, no. 8, Dec. 2016, doi: 10.1371/journal.pone.0161041.
[36] T. I. Karu and S. F. Kolyakov, “Exact action spectra for cellular responses relevant to phototherapy,” Photomed. Laser Surg., vol. 23, no. 4, pp. 355–361, Aug. 2005, doi: 10.1089/pho.2005.23.355.
[37] K. Ratnayake, J. L. Payton, O. H. Lakmal, and A. Karunarathne, “Blue light excited retinal intercepts cellular signaling,” Sci. Rep., vol. 8, no. 1, p. 10207, Jul. 2018, doi: 10.1038/s41598-018-28254-8.
[38] L. Colombo et al., “Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases,” BMC Ophthalmol., vol. 17, no. 1, p. 149, Dec. 2017, doi: 10.1186/s12886-017-0545-9.
[39] J. Vicente-Tejedor et al., “Removal of the blue component of light significantly decreases retinal damage after high intensity exposure,” PLOS ONE, vol. 13, no. 3, p. e0194218, Mar. 2018, doi: 10.1371/journal.pone.0194218.
[40] S. Fuma, H. Murase, Y. Kuse, K. Tsuruma, M. Shimazawa, and H. Hara, “Photobiomodulation with 670 nm light increased phagocytosis in human retinal pigment epithelial cells,” Mol. Vis., 2015.
[41] R. Albarracin, J. Eells, and K. Valter, “Photobiomodulation Protects the Retina from Light-Induced Photoreceptor Degeneration,” Investig. Opthalmology Vis. Sci., vol. 52, no. 6, p. 3582, May 2011, doi: 10.1167/iovs.10-6664.
[42] R. Albarracin, R. Natoli, M. Rutar, K. Valter, and J. Provis, “670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina,” BMC Neurosci., vol. 14, no. 1, p. 125, Dec. 2013, doi: 10.1186/1471-2202-14-125.
[43] J. A. Chu-Tan et al., “Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage,” Int. J. Photoenergy, vol. 2016, pp. 1–12, 2016, doi: 10.1155/2016/2734139.
[44] G. F. Merry, M. R. Munk, R. S. Dotson, M. G. Walker, and R. G. Devenyi, “Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration,” Acta Ophthalmol. (Copenh.), vol. 95, no. 4, pp. e270–e277, Jun. 2017, doi: 10.1111/aos.13354.
[45] C. Qu, W. Cao, Y. Fan, and Y. Lin, “Near-Infrared Light Protect the Photoreceptor from Light-Induced Damage in Rats,” in Retinal Degenerative Diseases, R. E. Anderson, J. G. Hollyfield, and M. M. LaVail, Eds., in Advances in Experimental Medicine and Biology, vol. 664. New York, NY: Springer New York, 2010, pp. 365–374. doi: 10.1007/978-1-4419-1399-9_42.
[46] R. Natoli, Y. Zhu, K. Valter, S. Bisti, J. Eells, and J. Stone, “Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina,” Mol. Vis., 2010.
[47] R. Begum, M. B. Powner, N. Hudson, C. Hogg, and G. Jeffery, “Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model,” PLoS ONE, vol. 8, no. 2, p. e57828, Feb. 2013, doi: 10.1371/journal.pone.0057828.
[48] F. Di Marco et al., “Combining Neuroprotectants in a Model of Retinal Degeneration: No Additive Benefit,” PLoS ONE, vol. 9, no. 6, p. e100389, Jun. 2014, doi: 10.1371/journal.pone.0100389.
[49] Y.-Z. Lu, N. Fernando, R. Natoli, M. Madigan, and K. Valter, “670nm light treatment following retinal injury modulates Müller cell gliosis: Evidence from in vivo and in vitro stress models,” Exp. Eye Res., vol. 169, pp. 1–12, Apr. 2018, doi: 10.1016/j.exer.2018.01.011.
[50] I. I. Geneva, “Photobiomodulation for the treatment of retinal diseases: a review,” Int. J. Ophthalmol., vol. 9, no. 1, pp. 145–152, 20151229, doi: 10.18240/ijo.2016.01.24.
[51] J. T. Eells et al., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci., vol. 100, no. 6, pp. 3439–3444, Mar. 2003, doi: 10.1073/pnas.0534746100.
[52] B. Burton et al., “LIGHTSITE II Randomized Multicenter Trial: Evaluation of Multiwavelength Photobiomodulation in Non-exudative Age-Related Macular Degeneration,” Ophthalmol. Ther., vol. 12, no. 2, pp. 953–968, Apr. 2023, doi: 10.1007/s40123-022-00640-6.
[53] R. C. Siqueira et al., “Short-Term Results of Photobiomodulation Using Light-Emitting Diode Light of 670 nm in Eyes with Age-Related Macular Degeneration,” Photobiomodulation Photomed. Laser Surg., vol. 39, no. 9, pp. 581–586, Sep. 2021, doi: 10.1089/photob.2021.0005.
[54] S. N. Markowitz et al., “A double-masked, randomized, sham-controlled, single-center study with photobiomodulation for the treatment of dry age-related macular degeneration,” Retina Phila. Pa, vol. 40, no. 8, pp. 1471–1482, Aug. 2020, doi: 10.1097/IAE.0000000000002632.
[55] T. I. Karu, “Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation,” IUBMB Life, vol. 62, no. 8, pp. 607–610, 2010, doi: 10.1002/iub.359.
[56] J. Kim and J. Y. Won, “Effect of Photobiomodulation in Suppression of Oxidative Stress on Retinal Pigment Epithelium,” Int. J. Mol. Sci., vol. 23, no. 12, p. 6413, Jun. 2022, doi: 10.3390/ijms23126413.
[57] C. Sivapathasuntharam, S. Sivaprasad, C. Hogg, and G. Jeffery, “Aging retinal function is improved by near infrared light (670 nm) that is associated with corrected mitochondrial decline,” Neurobiol. Aging, vol. 52, pp. 66–70, Apr. 2017, doi: 10.1016/j.neurobiolaging.2017.01.001.
[58] C. Sivapathasuntharam, S. Sivaprasad, C. Hogg, and G. Jeffery, “Improving mitochondrial function significantly reduces the rate of age related photoreceptor loss,” Exp. Eye Res., vol. 185, p. 107691, Aug. 2019, doi: 10.1016/j.exer.2019.107691.
[59] I. Kokkinopoulos, A. Colman, C. Hogg, J. Heckenlively, and G. Jeffery, “Age-related retinal inflammation is reduced by 670 nm light via increased mitochondrial membrane potential,” Neurobiol. Aging, vol. 34, no. 2, pp. 602–609, Feb. 2013, doi: 10.1016/j.neurobiolaging.2012.04.014.
[60] G. D et al., “Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP,” Exp. Eye Res., vol. 122, May 2014, doi: 10.1016/j.exer.2014.02.023.
[61] Y.-Y. Huang, S. Sharma, J. Carroll, and M. Hamblin, “Biphasic Dose Response in Low Level Light Therapy – An Update,” Dose-Response Publ. Int. Hormesis Soc., vol. 9, pp. 602–18, Oct. 2011, doi: 10.2203/dose-response.11-009.Hamblin.
[62] H. Chung, T. Dai, S. K. Sharma, Y.-Y. Huang, J. D. Carroll, and M. R. Hamblin, “The Nuts and Bolts of Low-level Laser (Light) Therapy,” Ann. Biomed. Eng., vol. 40, no. 2, pp. 516–533, Feb. 2012, doi: 10.1007/s10439-011-0454-7.
[63] M. E. de A. Chaves, A. R. de Araújo, A. C. C. Piancastelli, and M. Pinotti, “Effects of low-power light therapy on wound healing: LASER x LED,” An. Bras. Dermatol., vol. 89, no. 4, pp. 616–623, 2014, doi: 10.1590/abd1806-4841.20142519.
[64] V. Van Tran, M. Chae, J.-Y. Moon, and Y.-C. Lee, “Light emitting diodes technology-based photobiomodulation therapy (PBMT) for dermatology and aesthetics: Recent applications, challenges, and perspectives,” Opt. Laser Technol., vol. 135, p. 106698, Mar. 2021, doi: 10.1016/j.optlastec.2020.106698.
[65] R. A. Weiss, D. H. McDaniel, R. G. Geronemus, and M. A. Weiss, “Clinical trial of a novel non-thermal LED array for reversal of photoaging: Clinical, histologic, and surface profilometric results,” Lasers Surg. Med., vol. 36, no. 2, pp. 85–91, 2005, doi: 10.1002/lsm.20107.
[66] D. Barolet, C. J. Roberge, F. A. Auger, A. Boucher, and L. Germain, “Regulation of Skin Collagen Metabolism In Vitro Using a Pulsed 660nm LED Light Source: Clinical Correlation with a Single-Blinded Study,” J. Invest. Dermatol., vol. 129, no. 12, pp. 2751–2759, Dec. 2009, doi: 10.1038/jid.2009.186.
[67] A. Wunsch and K. Matuschka, “A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase,” Photomed. Laser Surg., vol. 32, no. 2, pp. 93–100, Feb. 2014, doi: 10.1089/pho.2013.3616.
[68] L. T. N. Ngoc, J.-Y. Moon, and Y.-C. Lee, “Utilization of light-emitting diodes for skin therapy: Systematic review and meta-analysis,” Photodermatol. Photoimmunol. Photomed., vol. n/a, no. n/a, 2022, doi: 10.1111/phpp.12841.
[69] E. Sorbellini, M. Rucco, and F. Rinaldi, “Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update,” Lasers Med. Sci., vol. 33, no. 7, pp. 1431–1439, Sep. 2018, doi: 10.1007/s10103-018-2584-8.